4 Ways to Reduce Energy Consumption and Costs

Wednesday 04 February 2015 at 3:17 pm

Posted By : Nate Nead

reduce energy costsMany organizations and enterprises today want to reduce energy costs and consumption. In fact, depending on the industry, many companies are even mandated to reduce energy costs and consumption. With the demand and cost of energy continuously on the rise, more and more enterprises and organizations are in the business and market for driving energy costs down.

So what are some tried and true ways to reduce energy consumption and overall costs? Here are some tips on how plant managers, facility managers, and project managers can implement new energy consumption goals.

Set Goals. Before implementing any type of new work flow or system to being monitoring and measuring energy consumption and process, a team must first set specific energy consumption and cost goals. Start small and basic. For example, facility and plant project managers might first strive to reduce energy cost consumption by 5% or 10%, to start. This will instill confidence and boost productivity within teams and to get everyone on the “norming” project phase where team members begin to see performance success and results.

Identify Risks. Managing any new project, even a goal-oriented project related to energy management, can come with its own set of risks. The risks that a plant or facility project manager is likely to identify when implementing strategic energy consumption goals can include financial risks and opportunity risks. Even though the overall goal is to reduce energy consumption costs, sometimes reaching these particular goals can acquire some financial costs up front. However, over time, organizations and enterprises are likely to see a higher return on investment.

Identify Opportunities. Similar the point above, with any element of project risk there are also opportunities that can transpire from a project’s outcome. In addition to meeting and reaching energy consumption goals, other opportunities may be discovered. For example, other investments or discoveries can be found when implementing and executing a new work flow, system, or resources that could prove to be more useful to a project, team, and even benefit the organization as a whole.

Executing New Standards. In order to effectively calculate and analyze data metrics related to energy consumption and costs, align the data with project goals, risks, and opportunities, and then assess overall performance outcome, a plant or facility team lead or project manager must then execute new standards. What worked? What didn’t? Is a post-mortem needed? What did the team learn? All of these questions can be asked when analyzing the overall performance of a project. From there, plant and facility project managers can then execute new standards for all team members to follow across the board.

All in all, the above four points can easily be implemented into any energy management team’s goals to effectively reduce overall energy consumption and costs. Even though executing a new energy management and consumption project might appear like a huge undertaking for an energy management team, the facility and plant project manager can effectively manage the overall project by following these four crucial steps to successfully meet energy management and consumption goals.

A Promising Outlook for Solar Energy Forecasting

Wednesday 04 February 2015 at 3:09 pm

Posted by Amy Sinatra Ayres

solar power
Solar energy continues to grow in the United States, but its relative unpredictability remains a hurdle in deploying it on the grid. Now a research team is working to create detailed 36-hour forecasts of incoming energy from the sun.

The three-year effort, led by the National Center for Atmospheric Research (NCAR), is funded by a $4.1 million grant from the U.S. Department of Energy. NCAR is working with universities, utilities and other energy companies, as well as commercial forecast providers, to predict with far more accuracy and specificity when cloud cover could reduce the amount of energy coming from the sun.

More than half of all states in the U.S. have required that utilities increase their use of renewable energy, but renewables are inherently variable. The hope is that solar can follow the example of wind, which now has far more reliable forecasts from a previous NCAR effort. (Related post: “Focusing on Facts: Can We Get All of Our Energy from Renewables?“)

The team is designing a prototype system that would forecast sunlight and the resulting power every 15 minutes over specific solar facilities.

One of the biggest challenges energy companies face with solar power is the ability to anticipate how much of it will be available — and when — so that they can reliably work it into the grid. (See related: “The Big Energy Question: What to Develop Next?“)

If an incorrect forecast shows that there will be more solar energy available than there is, a utility has to buy more on the wholesale market to make up for it — likely at a higher price than they would pay if they could plan ahead for it.

“What happens when a cloud comes over and cuts the production in half, and we as an ISO [independent system operator] have to go out and procure that energy? Then when you go to buy that energy it’s like buying an airline ticket” at the last minute, so it’s more expensive, explained Jim Blatchford, who helps integrate renewable energy into the smart grid for the California ISO, one of NCAR’s partners in the project.

“If we can predict what’s going on and we can line up that generation and buy it in the future instead of in real time,” the company can save money, he said.

Likewise, if more sun than is expected produces excess solar power, that extra energy can go to waste because currently there is no cost-effective way to store it.

“It’s critical for utility managers to know how much sunlight will be reaching solar energy plants in order to have confidence that they can supply sufficient power when their customers need it,” said Sue Ellen Haupt, director of NCAR’s Weather Systems and Assessment Program and the lead researcher on the solar energy project, in a statement. “These detailed cloud and irradiance forecasts are a vital step in using more energy from the sun.”

Nick Depmer, one of the managers on the trade floor at Xcel Energy in Colorado, knows that firsthand.

“You have to be able to unload or load up other assets to fill in that void,” he said. “If you can anticipate that issue, then you can react to it. The more accurate your forecast, the better.”

NCAR worked with Xcel to create a detailed wind energy forecast that saved Xcel ratepayers an estimated $6 million in a year. But determining cloud cover accurately and specifically always has been a challenge for meteorologists, because there are different types of clouds, and they’re affected by so many factors, including wind, humidity, surface heat, atmospheric gases, and more.

Russ Bigley, a meteorologist with Xcel, said the NCAR-led research team will start with the same atmospheric model that was used for wind, and tweak it to work for solar. He said solar forecasts that look further out might be easier than those for wind, but “solar on a five-minute basis is probably going to be a lot more difficult than the wind.”

Both Bigley and Depmer said that wind forecasting had come a long way with the NCAR project, in large part because information that companies might otherwise have kept to themselves was released. They’re hopeful the same will be true for solar, but they’re not convinced better forecasting will be the ultimate game changer because of solar’s cost.

Utilities do currently use solar forecasting, but they are looking for more detail.

“We do use computer models and we push that into a solar forecast based on cloud cover,” Bigley said. “I think right now … the state of the forecasting is probably in its infancy, and that’s partly because the penetration level of solar is not that great compared with other generation assets.”

The California ISO uses some solar forecasts in the two-hour range, but “we want to get it in closer to real time,” Blatchford said.

The research team will put in place a range of observing instruments, including lidars (laser-based technology that takes measurements in the atmosphere); specialized computer models; and mathematical and artificial intelligence techniques, according to a press release. A key part of the system will be placing groups of three sky imagers in each of several locations. They will observe the whole sky, triangulate the height and depth of clouds, and trace their paths across the sky.

Researchers plan to test the system in several geographic areas and during different weather patterns throughout the year.

The forecasts would then be able to predict when, where and what type of clouds would form over a specific area, as all of those factors have a varying impact on the amount of sunlight that gets through.

The utilities and ISOs can then look at the forecast and determine, “Where’s the sun in relation to those clouds? How’s it going to hit my solar farm?” said Blatchford. “This is all really just in its infancy. We’re [becoming] a little bit smarter, a little bit more advanced.”

Solar, Not Kerosene, Is What the World Needs

Wednesday 04 February 2015 at 3:01 pm

by Antonio Pasolini

solarLike in cartoons, sometimes a brilliant idea appears in the shape of a light bulb. This is because solar lights are some of the most brilliant ideas being developed to make the world a more sustainable place and to promote inclusion for those people living in remote areas.

Around two billion people in the world rely on burning biomass for cooking and power and a great portion of that live in off-grid regions. There’s a great opportunity there to bring alternative energy such as solar to those people, as we have seen in previous articles. And sometimes an idea can be really simple and take the shape of light bulb.

Nokero’s N200 solar powered LED lamp light bulb is one of them. Nokero is a short for no kerosene, in reference to the dirty fuel that so many people rely on. The company was founded in 2010 by American inventor Steve Katsaros. From his base in Denver he works on solar LED design innovation and orchestrates the business development, marketing and public relations of the company. The Hong Kong office deals with manufacturing, shipping and logistics.

  • 1